

# Using remote sensing and modelling for coastal detection







### **Babette Tchonang**

Postdoctoral Researcher NASA JPL

5<sup>th</sup> Symposium | Accra, Ghana | 24 – 28 October 2022







# Using remote sensing and modelling for coastal detection.

(1) Babette Christelle TCHONANG and (2) Pierre-Yves LE TRAON.(1) NASA Jet Propulsion Laboratory(2) Mercator Ocean international



### **Altimetry satellites**

### **Providing sea level measurements since 1992**



Chronology of altimetry missions (G. Dibarboure)

#### Major contribution of these measures:

- Understand
- Predict
- Modeling ... the global ocean (Le Traon et al., 2017)

### **Altimetry satellites**

### Integrated Multi-Mission Ocean Altimeter Data: 1992 -2011

- ✓ TOPEX/Poseidon (T/P)
- ✓ Jason-1 (J1)
- ✓ Ocean Surface Topography Mission/Jason-2 (OSTM)
- ✓ Jason-3 (J3)

![](_page_3_Figure_6.jpeg)

#### anomalies = $SSH(x, y, t_i) - \frac{1}{N} \sum_{i=1}^{N} SSH(x, y, t_i)$

# **Combination of missions : at least 4 altimeters are needed**

- Representation of large and mesoscale ocean dynamics (Chelton et al., 2011).
- Ocean analysis and forecasting system (Hamon et al., 2019).

### **Altimetry satellites**

### Integrated Multi-Mission Ocean Altimeter Data: 1992 -2011

- ✓ TOPEX/Poseidon (T/P)
- ✓ Jason-1 (J1)
- ✓ Ocean Surface Topography Mission/Jason-2 (OSTM)
- ✓ Jason-3 (J3)

![](_page_4_Figure_6.jpeg)

#### anomalies = $SSH(x, y, t_i) - \frac{1}{N} \sum_{i=1}^{N} SSH(x, y, t_i)$

# **Combination of missions : at least 4 altimeters are needed**

- Representation of large and mesoscale ocean dynamics (Chelton et al., 2011).
- Ocean analysis and forecasting system (Hamon et al., 2019).

#### Limitation : spatial resolution

- Distance between tracks too large
- Representation of wavelengths > 200 km only

- Mission developed in the framework of the cooperation between NASA and CNES with contributions from the space agencies of Canada and the United Kingdom.
  - Launch: early December 2022
  - Brings together two communities: Oceanographers and hydrologists focused on a better understanding of the world's oceans and its terrestrial surface waters

![](_page_5_Figure_4.jpeg)

Principle of operation of the SWOT satellite ©NASA

- Mission developed in the framework of the cooperation between NASA and CNES with contributions from the space agencies of Canada and the United Kingdom.
  - Launch: early December 2022
  - Brings together two communities: Oceanographers and hydrologists focused on a better understanding of the world's oceans and its terrestrial surface waters

#### **Measurement characteristics:**

- Mowings: 2X 60 km wide
- Repeat cycle: ~=21 days
- Revisit time: 10 days at the equator to a few days at the poles,
- Orbit not synchronized with the sun with an inclination of 78°

![](_page_6_Figure_9.jpeg)

Principle of operation of the SWOT satellite ©NASA

- Mission developed in the framework of the cooperation between NASA and CNES with contributions from the space agencies of Canada and the United Kingdom.
  - Launch: early December 2022
  - Brings together two communities: Oceanographers and hydrologists focused on a better understanding of the world's oceans and its terrestrial surface waters

#### **Measurement characteristics:**

- Mowings: 2X 60 km wide
- Repeat cycle: ~=21 days
- Revisit time: 10 days at the equator to a few days at the poles,
- Orbit not synchronized with the sun with an inclination of 78°

#### Will meet the limitations of nadir altimeters:

- 2D sea level measurement (SSH)
- Unprecedented spatial resolution up to 15 km
- Larger spatial coverage of data
- Representation of ocean mesoscale and sub-mesoscale variability (Wang et al., 2019)

![](_page_7_Figure_14.jpeg)

Principle of operation of the SWOT satellite ©NASA

- Mission developed in the framework of the cooperation between NASA and CNES with contributions from the space agencies of Canada and the United Kingdom.
  - Launch: early December 2022
  - Brings together two communities: Oceanographers and hydrologists focused on a better understanding of the world's oceans and its terrestrial surface waters

#### **Measurement characteristics:**

- Mowings: 2X 60 km wide
- Repeat cycle: ~=21 days
- Revisit time: 10 days at the equator to a few days at the poles,
- Orbit not synchronized with the sun with an inclination of 78°

#### Will meet the limitations of nadir altimeters:

- 2D sea level measurement (SSH)
- Unprecedented spatial resolution up to 15 km
- Larger spatial coverage of data
- Representation of ocean mesoscale and sub-mesoscale variability (Wang et al., 2019)

![](_page_8_Figure_14.jpeg)

Limitation: Time resolution **>** not sufficient to capture small scales that evolve rapidly over time

Principle of operation of the SWOT satellite ©NASA

# What impact will SWOT have on operational oceanography at the global and coastal levels?

• Satellite data : observations of the ocean at the surface → can only represent the structures with wavelength >200km

![](_page_10_Picture_2.jpeg)

- Satellite data : observations of the ocean at the surface → can only represent the structures with wavelength >200km
- In-situ data : deep ocean observations with a focus on submesoscales (15-150 km) (e.g. Legler et al., 2015) → cannot cover the entire ocean.

![](_page_11_Picture_3.jpeg)

![](_page_11_Figure_4.jpeg)

- Satellite data : observations of the ocean at the surface → can only represent the structures with wavelength >200km
- In-situ data : deep ocean observations with a focus on submesoscales (15-150 km) (e.g. Legler et al., 2015) → cannot cover the entire ocean.
- Free numerical models without constraining it to observations: representation of the ocean in three dimensions (e.g. Bell et al., 2015) → will drift away from the real state of the ocean at some point.

![](_page_12_Picture_4.jpeg)

![](_page_12_Figure_5.jpeg)

![](_page_12_Picture_6.jpeg)

- Satellite data : observations of the ocean at the surface → can only represent the structures with wavelength >200km
- In-situ data : deep ocean observations with a focus on submesoscales (15-150 km) (e.g. Legler et al., 2015) → cannot cover the entire ocean.
- Free numerical models without constraining it to observations: representation of the ocean in three dimensions (e.g. Bell et al., 2015) → will drift away from the real state of the ocean at some point.

![](_page_13_Picture_4.jpeg)

Data assimilation: combine satellite and in situ observations and high-resolution numerical models to provide an efficient approach to best-estimate the true state of the ocean in space and time.

![](_page_13_Picture_6.jpeg)

![](_page_13_Figure_7.jpeg)

![](_page_13_Picture_8.jpeg)

### PhD work: impact of SWOT on ocean analysis and forecasting

Step 1: Simulate NR and FR (≠ oceanic state).

![](_page_14_Figure_2.jpeg)

#### Free Run (FR): OSSE0

![](_page_14_Figure_4.jpeg)

![](_page_14_Figure_5.jpeg)

Step 2: Generate synthetic obs

NR: synthetic observations

- In-situ: position /date = obs. CORA4 of Coriolis
- SST: 1/4° weekly card L4

Satellite observations:

- 3 Nadir: Jason3, Sentinel 3A et 3B→ 3cm error
- SWOT → KaRIn noise (JPL' simulator, 7km X 7km)

Assimilation system: SAM2 (système d'assimilation mercator) Assimilation cycle: 7 days

![](_page_14_Figure_14.jpeg)

**Step 3: Assimilate the obs in the FR** 

![](_page_14_Figure_16.jpeg)

### Simulation of observations

✤ Nadir altimeters: 01-07/01/2015: simulated SSH data

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

### Simulation of observations

✤ The SWOT satellite: 01-07/01/2025: simulated data from SSH

![](_page_16_Figure_2.jpeg)

### Results: Impact on SSH (Sea Surface Height)

### ✤ SSH analysis error variance (NR –OSSE0,1)

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

- ➢ OSSE0: high error value almost everywhere → NR and FR are decorated
- **OSSE1:** considerable reduction of the analysis error

### Results: Impact on SSH (Sea Surface Height)

OSSE1 → 3 Nadir OSSE2 → SWOT

Difference: Var SSH(OSSE1) – Var SSH(OSSE2, 3)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

- OSSE2: SSH improvement in high latitudes -> high data density
- OSSE2: SSH degradation in the equatorial band, and western edge currents -> fast dynamic < 21 days</p>
- Solution of significant suppression of the degradation observed in OSSE2

The joint assimilation of SWOT and 3nadir observations provided the best performance almost everywhere.

### Results: Impact on SSH filtered at 200 km

SSH error variance: OSSE0 and 1

60°W

60°W

(a) OSSE0

120°W

120°W

(c) OSSE2

60°N

45°N

30°N

15°N

0

15°S

30°S

45°S

60°S

60°N

45°N

30°N

15°N

15°S 30°S

45°S

60°S

180°W

180°W

Difference: Var Error OSSE1 - Var Error OSSE2 and 3

0°

 $\checkmark$  Equatorial band  $\rightarrow$  signal < 200 km is weak ✓ High latitude → space-time coverage of SWOT is denser (b) OSSE1 Variance (cm<sup>2</sup>) 60°N 25 45°N 20 30°N 15°N 40 -15 0 - 10 15°S 20 30°S 45°S **OSSE1** analysis 60°S **OSSE2** analysis 180°E 180°W 120°W 60°W 0° 60°E 120°E **OSSE3** analysis (d) OSSE3 difference  $(cm^2)$ 60°N 5.0 -20 45°N

![](_page_19_Figure_4.jpeg)

Tchonang et al., 2021

By excluding equatorial and tropical regions (+/- 20°), OSSE3 reduces the global error of OSSE1 in the analyses by about 40%.

Variance ( $cm^2$ )

20

15

10

5

5.0

180°E

difference ( $cm^2$ )

120°E

60°E

OSSE1 → 3 Nadir OSSE2 → SWOT OSSE3 → SWOT + 3 Nadir

Zonal average variance error  $(cm^2)$ 

-60

### Take home message

✓ SWOT observations will allow assimilation systems to constrain spatial scales beyond what is currently achievable using a constellation of nadir altimeters.

 ✓ SWOT observations will have a significant improvement in the quality of ocean analyses and forecasts, therefore it will bring an breakthrough in operational oceanography.

### Applications of operational oceanography.

### An integrated approach to describe and forecast the ocean in real time

- Warnings about coastal floods, storm impacts, harmful algal blooms and contaminants
- Electronic charts, sea state conditions, optimum routes for ships
- Prediction of primary productivity, ocean currents, ocean climate variability
- Modelling of and response to oil spills and dredging

![](_page_21_Picture_6.jpeg)

5<sup>th</sup> Symposium | Accra, Ghana

24 – 28 October 2022

![](_page_22_Picture_2.jpeg)

Thank You. Medaase. Oyiwaladon. Contact: Tchonang@jpl.nasa.gov

![](_page_22_Picture_4.jpeg)