# **Remote Sensing for Fisheries**

Shubha Sathyendranath and Trevor Platt Plymouth Marine Laboratory UK Fisheries Applications of EO include:

- Harvest Fisheries
  - economies of fuel and time
- Fisheries Management
  - intelligence on ecosystem fluctuations and effect on future states of exploited stocks
- Aquaculture Industry
  - carrying capacity, harmful algal blooms
- Protection of Species at Risk
  - exclusion zones and reduction of by-catch
- •Marine Protected Areas & Vulnerable Marine Ecosystems
  - delineation of these
- Ecosystem Health and Ecosystem Services
  - monitoring health, evaluating services
- High Seas Governance
  - international governance strategy, ecosystem delineation, straddling stocks





For further details, see IOCCG Report No. 8



# What some countries are doing

INDIA Routinely delivers remotely-sensed data (chlorophyll and temperature) to fishing communities all around the coast, in local languages.

JAPAN Routinely delivers temperature and chlorophyll data to fishing fleets (near-shore and offshore), each vessel equipped with standard computer and standard software.



Fish Harvesting – commercial applications TOREDAS System – Japan Information system using RS/GIS for the offshore fisheries activities around Japan Sei-Ichi Saitoh<sup>1, 2</sup>, Fumihiro Takahashi<sup>2</sup> and



Use Chl-a, currents and SST fronts to determine squid fishing grounds (red)

Target species: Japanese common squid, Pacific saury, albacore tuna, skipjack tuna

Sei-Ichi Saitoh<sup>1, 2</sup>, Fumihiro Takahashi<sup>2</sup> and colleagues

### <sup>1</sup>Hokkaido University <sup>2</sup>SpaceFish LLP



Saithoh et al. (2010)

# Potential Fishing Zone Identification by Remote Sensing: Results of Indian Assessment of Economic Benefits (Kerala Coast)



PFZ Forecast based on SST and Chl Issued: Dec 15, 2006 Valid up to: Dec 18, 2006

| Details                                                        | PFZ                                         | Non PFZ                                    |
|----------------------------------------------------------------|---------------------------------------------|--------------------------------------------|
| Name of the Boat                                               | MRR-8                                       | MRR-10                                     |
| Type of Boat                                                   | Mech. Ring Seine                            | Mech. Ring Seine                           |
| Duration of Total Trip                                         | 9 Hrs 30 Min                                | 7 Hrs 15 Min                               |
| Number of fishing hours                                        | 01                                          | 01                                         |
| Number of Hauls                                                | 01                                          | 01                                         |
| Number of Fishermen Engaged                                    | 37                                          | 36                                         |
| Total Catch (Kgs)                                              | 7200                                        | 1800                                       |
| Major Species Caught                                           | Carangids                                   | Carangids                                  |
| Approximate cost of total catch (Rs) (@ 50<br>Rs /Kg)          | 3, 60, 000                                  | 90, 000                                    |
| <b>Total Expenditure in Fishing Operation</b><br>( <b>Rs</b> ) | 77, 600<br>(Fuel: 5, 400)<br>(Wage:72, 000) | 21, 440<br>(Fuel: 3, 240)<br>(Wage:9, 000) |
| Net Profit                                                     | 2, 82, 400                                  | 68, 560                                    |

Details of Simultaneous Fishing Operation by Two Vessels (PFZ & Non PFZ) on December 16, 2006

Srinivas *et al.* (2008)

## Phytoplankton primary production and fish catches

### Large-scale trophic coupling

- Fish catch data from 1960s to 1990s (INPFC) and primary production from remote-sensing (SeaWiFS)
- Strong linkage between largescale, area-specific rates of primary production and fish catches
- Coupling observed in a range of large marine ecosystems



Ware et al., 2000, Ware et al., 2005

### **Time Series and Seasonality**



Construction of time series possible at any chosen scale of spatial averaging

Seasonal signal is key feature of the time series: Spring bloom is dominant event in seasonal cycle



Time

### Testing the Hjort-Cushing Match-Mismatch Hypothesis

### Johan Hjort For.Mem. RS (1869-1948)

David Cushing FRS (1920-2008)

Pioneer in study of relation between ecosystem variability and fisheries



Anomalies in the timing of spring bloom (weeks)

### Survival of Haddock Larvae as Function of Timing of Spring Bloom Peak



- where number of haddock larvae and biomass of phytoplankton overlap, larvae have food supply adequate for survival
- where this is not so, larvae are vulnerable to death by starvation

Platt et al., 2003

# Application of time-series data applied to study growth, survival and distribution of Northern shrimp

### Life Cycle of Northern Shrimp



### Koeller et al. 2006; Fuentes-Yaco et al. 2006; Koeller et al. 2009

### Basin-scale coherence of North Atlantic shrimp stocks





Landed annual value of the fishery at the scale of the North Atlantic Basin: US \$ 0.5 Billion

Koeller, Fuentes-Yaco, Platt, Sathyendranath and others (2009)



SAFARI (Societal Applications in Fisheries and Aquaculture using Remotely-Sensed Imagery)

GROUP ON EARTH OBSERVATIONS

Objectives of SAFARI include:

- An international forum for coordination and exchange of views on use of remotely-sensed data in fisheries oceanography
- A stimulus for new research and operations in this subject area
- A vehicle for transfer of knowledge from the research sector to the operational sector

Activities:

- International Workshop, Halifax, 2008
- SAFARI Brochure, 2008
- Monograph in IOCCG series, 2009
- Special session ASLO, Nice (France), 2009
- First International Symposium, Kochi (India), 2010
- Second International Symposium, Kochi (India), 2018
- Third International Symposium, Kochi (India), planned for 2022



## **Conclusions and Future Directions**

- EO can support fisheries in many ways: it is a relatively new field whose economic aspects are largely unexplored.
- The benefits arising from intangibles such as provision of intelligence to aid resource management; negotiation; stewardship; protection of biodiversity; provision of ecosystem services; and high-seas governance, remain to be quantified.
- This task will require a collaboration between scientists and economists, the fishing community and other stake-holders.

- This talk builds on earlier presentations of Trevor Platt on this topic, and is very much inspired by his work.
- SAFARI was his vision, as was GEO Blue Planet.
- I am honoured to have worked by his side on these initiatives.

Thank you

