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The last two decades have seen a massive growth in Earth Observation 

effort both from space and in situ

 It s a great news for marine biologists and fishery scientists, but also

rather complicated to navigate in this big data ocean
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Marine biologists / 

fisheries scientists are 

mostly looking for 

accurate ocean fields of a 

few key variables:
• T, S, U,  V,  W (3D)

• NPP  

• Dissolved O2

• pH

with no gap, on standard 

grids & format, quality info, 

regular updates, over 

several past decades and 

present / forecast. 

Such products are now

provided by ocean

models assimilating all 

EO data.

But still, two other key 

variables are needed:

• Zooplankton

• Micronekton
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Mar-May98

Satellite 
Chlorophyll

Bloom of phytoplankton at the end of 1997-98 El Niño

Size Frequencies 
of skipjack 

caught by purse 
seiners

Longueurs (cm)

Oct-Dec 98

Tuna catch by purse seiners

+  7 months

Fish larvae feed on zooplankton
that feed on phytoplankton

Lehodey et al. (2011) 

Jul-Sep 98

Zooplankton
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night

day

Prey detection

from acoustic

38 kHz

Time series of depth and temperature for one bigeye 

tuna tagged in the N-W Atlantic (C. H. Lam et al. 

2014)

Behaviour and distributions of large oceanic species are linked to the 

distribution of their prey (micronekton). 

Temperature profiles obtained for a two-month foraging

trip of one Elephant Seal. Each black dot corresponds  to 

a prey capture attempt (Vacquié-Garcia et al. 2015).

Micronekton

dinner
breakfeast

lunch
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A parsimonious approach  

(11 param. )

Using temperature, 

oceanic currents and 

primary production (sat. 

or mod.),  the model 

SEAPODYM-LMTL simulates 

spatio-temporal dynamics of 

one zooplankton and 6 

micronekton functional 

groups, according to their 

diel vertical migration 

behavior in 3 vertical layers 

(epi-, upper meso- and lower 

meso-pelagic). 

mesozooplankton

micronekton

Time of development

until maturity vs 

temperature

E Ref: Lehodey et al. 1998; Fish. 

Oceanog.; 2010, Progr. Oceanog.; 

2015, ICES J Mar Sci;  

CMEMS: QUID document

A model of zooplankton and micronekton
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https://marine.copernicus.eu/

A model of zooplankton and micronekton
A first product is available: global (60°N-60°S) 1998-2019 0.25° x week
Next release: 1st quarter of 2021 (80°N-80°S) 1998-2019; 1/12° (9 km) x day

Case studies on large marine species habitat/behaviour using Zpk and Mnk:

• Pérez-Jorge  et al. (2020). Environmental drivers of large-scale movements of baleen whales in the mid-
North Atlantic Ocean. Diversity and Distributions, 26(6): 683-698.

• Green et al. (2020). Modelled mid-trophic pelagic prey fields improve understanding of marine predator 
foraging behaviour. Ecography, 43(7): 1014- 1026.

• Romagosa et al. (2020). Differences in regional oceanography and prey biomass influence the presence 
of foraging odontocetes at two Atlantic seamounts. Marine Mammal Science, 36(1): 158-179.

• Lambert et al. (2014) Predicting Cetacean Habitats from Their Energetic Needs and the distribution of 
Their Prey in Two Contrasted Tropical Regions. PLoS ONE 9(8): e105958. 

• Abecassis et al. (2013) A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the 
Oceanic North Pacific. PLoS ONE 8(9): e73274. doi:10.1371/journal.pone.0073274
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Operational modeling of tuna

Bio-physical environment: 

• Temperature

• Currents

• Dissolved oxygen

• Euphotic depth

• Primary production

• Zooplankton (1 group)

• Micronekton (6 groups)
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Bio-physical environment: 

• Temperature

• Currents

• Dissolved oxygen

• Euphotic depth

• Primary production

• Zooplankton (1 group)

• Micronekton (6 groups)

0

1

Prey 

density

0

1

Predators

density

X X
zoopk

micronk

Holling-III

0
Water 

Temperature

1
Gaussian Log-Normal

𝐻𝑠 = 𝑓1 𝑝𝑟𝑒𝑦 𝑓2 𝑇° 𝑓3 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟

Spawning habitat Hs

Predicted bluefin

larvae density

𝐹 =
𝐹11 0 0
𝐹21 𝐹22 0
𝐹31 𝐹32 𝐹33

Loggerhead turtle

(Abecassis et al 

2012)

Feeding habitat Ha

age

0
Water 

Temperature

1

0
Dissolved

Oxygen

1
Accessibility at 

age a in layer z

X = Θaz

𝐻𝑎 =
2

𝜋
atan

𝜋

2
σ𝑧=0
𝑧=2 σ𝑧′=0

𝑧′=𝑧 𝜃𝑎𝑧𝑧′ × 𝐹𝑎𝑧𝑧′

𝜃𝑎𝑧𝑧′=  Θ𝑎𝑧 + (1-) Θ𝑎𝑧′
Accessibility to 

Forage group Fzz’day night

scaling [0-1]

<= Predicted habitat 

and observed tracks

<= Predicted

movement and 

observed tracks

Observed bluefin

larvae density

8/13

t0 + 11.5 months



Operational modeling of tuna
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to skipjack tuna (Katsuwonus pelamis). Can. J. Fish. Aquat. Sci. 56, 925–938

Bertignac M., Lehodey P., Hampton J., (1998). A spatial population dynamics simulation model
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Oceanog., 7: 326-334.
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Operational modeling of tuna
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Operational modeling of tuna
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Skipjack recruits (1/12° x day)

Lehodey P., Senina I., Wibawa T. A., Titaud O., Calmettes B., Tranchant B., and P. Gaspar (2018). Operational modelling of bigeye tuna (Thunnus 

obesus) spatial dynamics in the Indonesian region. Marine Pollution Bulletin, 131: 19-32

Operational modeling of tuna
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Conclusions

▪ Integrated systems (OBS + MOD) for ocean modelling makes the forecast of fish 

stocks a true possibility

▪ Two essential Ecosystem variables (Zooplankton and Micronekton) are becoming 

available in addition to key physical and biogeochemical ones

▪ Models (habitats & spatial dynamics) will provide new management tools with 

additional features for  spatial management 

▪ Fishing impact can be discriminated from natural variability 

▪ Support to monitoring of fisheries (eg IUU, pollution)

▪ Provide rapid feedback on quality and gaps to address in priority
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Next release to come…

Thanks! 

Questions?


