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ÝThe last two decadeshave seena massive growth in EarthObservation 

effort both from spaceand in situ

Ý It s a greatnews for marine biologistsand fisheryscientists, but also

rather complicatedto navigatein this big data ocean
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Marine biologists/ 

fisheriesscientistsare 

mostlylookingfor 

accurateoceanfieldsof a 

few key variables:
Å T, S, U,  V,  W (3D)

Å NPP  

Å DissolvedO2

Å pH

with no gap, on standard 

grids& format, qualityinfo, 

regularupdates, over 

severalpastdecadesand 

present/ forecast. 

Such products are now

provided by ocean

models assimilating all 

EO data.

But still , two other key 

variables are needed:

Å Zooplankton

Å Micronekton
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Mar-May98

Satellite 
Chlorophyll

Bloom of phytoplankton at the end of 1997-98 El Niño

Size Frequencies 
of skipjack 

caught by purse 
seiners

Longueurs (cm)

Oct-Dec 98

Tunacatch by purseseiners

+  7 months

Fish larvaefeedon zooplankton
that feedon phytoplankton

Lehodey et al. (2011) 

Jul-Sep 98

Zooplankton
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night

day

Prey detection

from acoustic

38 kHz

Time series of depth and temperature for one bigeye 

tuna tagged in the N-W Atlantic (C. H. Lam et al. 

2014)

Behaviourand distributions of large oceanicspeciesare linkedto the 

distribution of their prey (micronekton). 

Temperatureprofiles obtainedfor a two-month foraging

trip of one ElephantSeal. Eachblack dot corresponds  to 

a prey capture attempt (Vacquié-Garcia et al. 2015).

Micronekton

dinner
breakfeast

lunch
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A parsimonious approach  

(11 param. )

Using temperature , 

oceanic currents and 

primary production (sat. 

or mod.),  the model 

SEAPODYM-LMTL simulates 

spatio-temporal dynamics of 

one zooplankton and 6 

micronekton functional 

groups, according to their 

diel vertical migration 

behavior in 3 vertical layers 

(epi-, upper meso- and lower 

meso-pelagic). 

mesozooplankton

micronekton

Time of development

until maturity vs 

temperature

E Ref: Lehodey et al. 1998; Fish. 

Oceanog.; 2010, Progr. Oceanog.; 

2015, ICES J Mar Sci;  

CMEMS: QUID document

A model of zooplanktonand micronekton
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