Geo Blue Planet Workshop Series Session 3: 2 December 2020

Integrating Earth Observation in ocean ecosystem modelling for Improving Sustainable Tuna Management and Biodiversity Conservation

PATRICK LEHODEY (PatrickL@spc.int)

Oceanic Fisheries Programme, The Pacific Community

Noumea, New Caledonia

(On sabbatical year from Collecte Localisation Satellite, CLS, France)

 \Rightarrow The last two decades have seen a massive growth in Earth Observation effort both from space and in situ

 \Rightarrow It s a great news for marine biologists and fishery scientists, but also rather complicated to navigate in this big data ocean

Copernicus Marine Service

Tide Gauges (252)

Tsunameters (36

From EO to Tuna operational forecast system

Marine biologists / fisheries scientists are mostly looking for accurate ocean fields of a few key variables:

- T, S, U, V, W (3D)
- NPP
- Dissolved O₂
- рН

with no gap, on standard grids & format, quality info, regular updates, over several past decades and present / forecast.

Such products are now provided by ocean models assimilating all EO data.

But still, two other key variables are needed:

- Zooplankton
- Micronekton

3/13

Zooplankton

Fish larvae feed on zooplankton that feed on phytoplankton

Bloom of phytoplankton at the end of 1997-98 El Niño

Copernicus

arine Service

Micronekton

Behaviour and distributions of large oceanic species are linked to the distribution of their prey (micronekton).

Temperature profiles obtained for a two-month foraging trip of one Elephant Seal. Each black dot corresponds to a prey capture attempt (Vacquié-Garcia et al. 2015). Time series of depth and temperature for one bigeye tuna tagged in the N-W Atlantic (C. H. Lam et al. 2014)

A model of zooplankton and micronekton

Using temperature, oceanic currents and primary production (sat. or mod.), the model **SEAPODYM-LMTL** simulates spatio-temporal dynamics of one zooplankton and 6 micronekton functional groups, according to their diel vertical migration behavior in 3 vertical layers (epi-, upper meso- and lower meso-pelagic).

A model of zooplankton and micronekton

A first product is available: global (60°N-60°S) 1998-2019 0.25° x week Next release: 1st quarter of 2021 (80°N-80°S) 1998-2019; 1/12° (9 km) x day

Case studies on large marine species habitat/behaviour using Zpk and Mnk:

- Pérez-Jorge et al. (2020). Environmental drivers of large-scale movements of baleen **whales** in the mid-North Atlantic Ocean. Diversity and Distributions, 26(6): 683-698.
- Green et al. (2020). Modelled mid-trophic pelagic prey fields improve understanding of marine **predator** foraging behaviour. *Ecography, 43(7): 1014- 1026.*
- Romagosa et al. (2020). Differences in regional oceanography and prey biomass influence the presence of foraging odontocetes at two Atlantic seamounts. *Marine Mammal Science*, 36(1): 158-179.
- Lambert et al. (2014) Predicting **Cetacean** Habitats from Their Energetic Needs and the distribution of Their Prey in Two Contrasted Tropical Regions. PLoS ONE 9(8): e105958.
- Abecassis et al. (2013) A Model of Loggerhead Sea **Turtle** (*Caretta caretta*) Habitat and Movement in the Oceanic North Pacific. PLoS ONE 8(9): e73274. doi:10.1371/journal.pone.0073274

Bio-physical environment:

- Temperature
- Currents
- Dissolved oxygen
- Euphotic depth
- Primary production
- Zooplankton (I group)
- Micronekton (6 groups)

Pacific

Pacific

1 8 8 kg 8

1 8 8 kg 8

1 8 8 kg 8

www.seapodym.eu

- Sibert, J.R., Hampton, J., Fournier, D.A., Bills, P.J. (1999). An advection–diffusion– reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (*Katsuwonus pelamis*). *Can. J. Fish. Aquat. Sci.* 56, 925–938
- Bertignac M., Lehodey P., Hampton J., (1998). A spatial population dynamics simulation model of tropical tunas using a habitat index based on environmental parameters. *Fish. Oceanog.*, 7: 326-334.
- Lehodey P., André J-M., Bertignac M., Hampton J., Stoens A., C. Menkès, L., Memery, Grima N., (1998). Predicting skipjack tuna forage distributions in the Equatorial Pacific using a coupled dynamical bio-geochemical model. *Fish. Oceanog.*, 7: 317-325.
- Lehodey P., (2001). The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO. *Prog. Oceanog.*, 49: 439-468.
- Lehodey P., Chai F., & Hampton J. (2003). Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model. *Fish. Oceanog*, 12(4): 483-494
- Lehodey P., Senina I., Murtugudde R. (2008). A Spatial Ecosystem And Populations Dynamics Model (SEAPODYM) – Modelling of tuna and tuna-like populations. *Prog.Oceanog.*, **78**: 304-318.
- Senina I., Sibert J., & Lehodey P. (2008). Parameter estimation for basin-scale ecosystemlinked population models of large pelagic predators: application to skipjack tuna. *Prog. Oceanog.*, 78: 319-335.
- Lehodey P., Murtugudde R., Senina I. (2010). Bridging the gap from ocean models to population dynamics of large marine predators: a model of mid-trophic functional groups. *Prog. Oceanog.*, **84**: 69–84
- Hernandez O., Lehodey P., Senina I., Echevin V., Ayon P., Bertrand A., Gaspar P., (2014). Understanding mechanisms that control fish spawning and larval recruitment: Parameter optimization of an Eulerian model (SEAPODYM-SP) with Peruvian anchovy and sardine eggs and larvae data. *Prog. Oceanog.* 123, 105-122.
- Dragon A-C., Senina, Hintzen N.T., Lehodey P., (2018). Modelling South Pacific Jack Mackerel spatial population dynamics and fisheries. *Fish. Oceanog.* 27(2): 97-113.
- Lehodey, P., Conchon, A., Senina, I., Domokos, R., Calmettes, B., Jouanno, J., Hernandez, O., and Kloser, R. (2015) Optimization of a micronekton model with acoustic data. *ICES J. Mar. Sci.*, 72(5): 1399-1412.
- Lehodey P., Senina I., Wibawa T. A., Titaud O., Calmettes B., Tranchant B., and P. Gaspar (2017). Operational modelling of bigeye tuna (*Thunnus obesus*) spatial dynamics in the Indonesian region. *Marine Pollution Bulletin*, 131: 19-32.
- Senina I., Lehodey P., Hampton J., Sibert J. (2019). Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations. Deep Sea Res. 175, 104667
- Senina I., Lehodey P., Sibert J., Hampton J., (2019) Improving predictions of a spatially explicit fish population dynamics model using tagging data. *Can.J. Aqu. Fish. Sci.*, 77(3): 576-593

Lehodey P., Senina I., Wibawa T.A., Titaud O., Calmettes B., Tranchant B., and P. Gaspar (2018). Operational modelling of bigeye tuna (*Thunnus obesus*) spatial dynamics in the Indonesian region. Marine Pollution Bulletin, 131: 19-32

Pacific

Stock assessment and management scenarios

- Stock estimates (recruits, spawning biomass, ...)
- Fishing mortality
- Fishing Impact vs environmental variability
- Management
 Scenarios : (fishing effort, fishing areas and periods,...)
- Spatial planning

Operational Monitoring (real-time)

- Support to monitoring of fishing
- Support to detection of IUU
- Pollution impacts

Pacific Community Communauté du Pacifique

12/13

Conclusions

- Integrated systems (OBS + MOD) for ocean modelling makes the forecast of fish stocks a true possibility
- Two essential Ecosystem variables (Zooplankton and Micronekton) are becoming available in addition to key physical and biogeochemical ones
- Models (habitats & spatial dynamics) will provide new management tools with additional features for spatial management
- Fishing impact can be discriminated from natural variability
- Support to monitoring of fisheries (eg IUU, pollution)
- Provide rapid feedback on quality and gaps to address in priority

Next release to come...

mass content of epipelagic micronekton expressed as wet weight in sea water

Thanks!

Questions?

