

Session #1 / 12 November 2020

Observed and Projected Climate Change Effects on Tuna Fisheries in the Western Indian Ocean

Francis Marsac (IRD) & Hassan Moustahfid (NOAA)

Institut de Recherche pour le Développement F R A N C E

- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

Importance of tuna fisheries in WIO, especially for SIDS

- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

Economic importance of fisheries in the Western Indian Ocean (WIO)

- **9%** of the gross marine product in WIO.
- 87 % is from large-scale commercial and industrial or semi-industrial fisheries
- **Tuna** is the most important source of national revenue.
- WIO contributes ~18% of the 5 million tons of annual global tuna catch (Obura et al. 2017).
- For the **SIDS**, **fisheries rank high** in historical and cultural importance, and to national economies.
- e.g. **30% of gross domestic** product in the Seychelles comes from industrial fisheries
- Exports: ~95% of the domestic exports value in Seychelles and ~19% in Mauritius

Importance of tuna fisheries in WIO, especially for SIDS

- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

The Indian Ocean Dipole (IOD) phases

The IOD informs on the east-west temperature gradient across the tropical Indian Ocean. It is associated to wind and rainfall anomalies (Saji et al., Nature, 1999)

Dipole Mode Index : time series 1950-2020

- 1950-1999 : a rather periodic occurrence of Dipole events, with a dominant 5-year periodicity, and 40% of periodogram below 2-year signals
- Since 2000 : shorter periodicity (dominant 4-year cycle) and a more « noisy » DMI signal with 55% of periodogram below 2-year signal

DMI – SOI interactions

- Colinearity between SOI and DMI : Positive dipoles with El Niño events, and negative dipoles with La Niña events (with some lag)
- However, the 1961/62 occurred with no El Niño, and 1994/95 strong positive DMI coincided with a weak El Niño
- DMI depicts processes that are internal to the IO (Saji et al., Nature, 1999)

Trend over the 20th century

DMI is gradually trending towards positive dipoles since the 1960s ...

...whereas no trend is detected with the SOI

- Importance of tuna fisheries in WIO, especially for SIDS
- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

The WIO has remained the core of the purse seine fishery since its beginning, with highest catches recorded west of 55°E

Catches (tons)

Heat maps of purse seine catches by decade (data source IOTC)

Ocean Response to Positive Dipoles

- Higher SST in the West Indian Ocean, including a less intense Somali upwelling

Marsac & Demarcq, 2019

Oct 2019 Source: IOSSTv -10 --20 -1 ₄°C Dec 2019 20 10 -Source. IOSST -10 -

20

60

100 m

-20 👝

-100

-60

 Deeper thermocline in the south equatorial zone of the West Indian Ocean

Ocean Response to Positive Dipoles

- Reduction of the primary productivity in the West Indian Ocean ...
- ... and productivity enhancement in the East Indian Ocean

The Chlorophyll-a concentration has fluctuated greatly in the WIO, with alternating phases

Ocean Response to Positive Dipoles

- Reduction of the primary productivity in the West Indian Ocean ...
- ... and productivity enhancement in the East Indian Ocean

Tuna catch distribution in January 1998

Fluctuations in the recruitment of tunas in the fishery can be driven by the variability in chlorophyll concentration

- The link is mediated by the tuna prey component (small pelagic fish, crustaceans, cephalopods) which is driven by the production at the base of the food web
- The 2001-2005 golden years

Skipjack recruitment (RecDev) is estimated by the Stock Synthesis 3 model (Fu, 2020, IOTC/WPTT)

Chlorophyl-a is derived from SeaWifs and Modis color data

- Importance of tuna fisheries in WIO, especially for SIDS
- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

Projected Climate Change in stressor intensity in 2090–2099 relative to 1990–1999 (Bopp et al., 2013)

The case of the RCP8.5 (highest CO₂ scenario).

Sea surface temperature (°C)

A warmer North Western IO

Subsurface dissolved oxygen change (average 200–600 m, mmol m⁻³)

Vertically integrated Net Primary Production change (gC m⁻² yr⁻¹).

A more well-oxygenated water column in the Western IO

A dramatic depletion in NPP in the North Western IO

Expansion of unsuitable thermal habitats for tropical tunas from years 2040 to 2099, through a range of RCP scenarios

Temperature threshold : 31°C

(Dueri et al, GCB, 2014)

Projections for skipjack tuna over the 21st century (Dueri et al., 2014)

2050

2010

-2010 -2050

-20

2095

----2095

20

Simulations conducted with APECOSM ecosystem model (Maury, 2010)

First half of 21st century

Second half of 21st century

Mean biomass anomaly at the surface (0-10m) million tons

Projected changes by ocean, and by latitude

Latitude

- Overall increase of SKJ abundance until the middle of the 21st century
- Increase due to poleward shifts
- Sharp decline of biomass in the second half of the 21st century

Synoptic sketch of possible relocation of the purse seine fleets operating for tropical tuna in the WIO by 2100, under the highest CO_2 scenario (RCP8.5)

- Seychelles may see its strategic position for PS fleets challenged by other countries
- The longline gear would not be affected as much as purse seine
- Favorable conditions for longline could be maintained around Seychelles
- Opportunity for Seychellesbased longliners

Marsac, 2017

- Importance of tuna fisheries in WIO, especially for SIDS
- Observed Changes (IOD)
- Response to IOD changes
- Projected Changes
- Vulnerability of SIDS economy

Economic impacts of the 1998 Positive Dipole in Seychelles

(Robinson et al, Climate Res, 2010)

Model of spillover incurred by tuna fleet expenditure

Effects of the Tuna Industry Expenditures Benefiting the Seychelles economy

Economic impacts of the 1998 Positive Dipole in Seychelles

The 40% cut in landings and transshipments during 2 quarters resulted in a 34% loss for the local economy

Another major spatial shift of the tuna fishing fleets similar to the one that was observed during the 1997/98 El Nino/Positive Dipole, would have a devastating impact on SIDS which have developed economies that are strongly dependent on tuna fisheries.

Take home messages

- **Observable impacts** on fisheries throughout the WIO.
- Warmer habitats with declining productivity and major shift in distribution of Tuna species will induce strong socio-economic impacts in the WIO.
- Management measures should be adjusted periodically to account for the spatial patterns of tuna species.
- Monitoring programmes + modeling feasible with existing capacities, complemented by Earth Observations have the potential to support adaptive and more holistic management of Tuna Fisheries
- Partnerships at all levels (local, regional and international) is a key to achieving capacity development for effective management, and building adaptive capacity and resilience to Climate Change in the WIO region.