

Ocean and coastal observations for management of marine biodiversity

Isabel Sousa Pinto, Frank Muller-Karger and Mark Costello

- Biodiversity means food and other materials for people
- It is our ethical responsibility to prevent species extinctions and have healthy ecosystems
- Biodiversity is key in ecosystem function & resilience, to ecosystem services, (e.g. carbon & nutrient cycles) and ocean health
- Biodiversity is changing and decreasing (IPBES, 2018)
- Marine biodiversity and ecosystem services are a major knowledge gap (IPBES, 2018)

SUSTAINABLE DEVELOPMENT GOAL 14

Conserve and sustainably use the oceans, seas and marine resources for sustainable development

10 targets that require scientific information and capacity building on biodiversity

Acronym	Full name	Key activity	
CBD	Convention on Biological Diversity	Aichi Targets	
IMO	International Maritime Organisation	Protection of biodiversity and detection of invasive species	
IUCN (WCPA,	International Union for the	World Commission on Protected	
SSC)	Conservation of Nature	Areas, Species Survival	
		Commission	
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora	Protection of biodiversity	
IPBES	Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services	Assessments of biodiversity	

Science and Policy for People and Nature

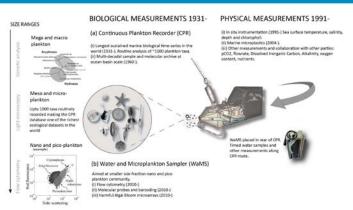
A global partnership for the systematic study of life in the sea ...from microbes to whales

Operational Objectives:

- Promote a global community of practice for the collection, curation, and analysis of marine biodiversity information
- Promote Best practices for marine biodiversity observation
 - IOC/IODE Ocean Best Practices repository (field, lab, metadata)/Bon in a Box
- Promote open-access databases (e.g. OBIS)
- Promote integration of biological observations with observing systems (e.g.GOOS)
- Support monitoring efforts in country or region
- Inform government and intergovernmental policies and practices

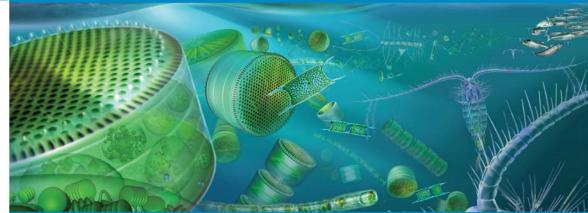
Scientific Objectives:

 Understand how and why life in the ocean is changing, how local changes relate to changes taking place over larger regions



Community of Practice

Sampling (since 1931) Globally operated by commercial ships


What does the CPR record: macroplankton to viruses

Community of Practice

Data collection:

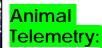
- Long-term monitoring, targeted survey expeditions & voyages of discovery.
- Voluntary divers individually trained and certified.

Community of Practice

HF Radar: Biological Data and Biological Variables:

Observing so

Gliders:



Wave Measurements:

US Marine Biodiversity
Observation Network
(MBON): MBON

Pacioos

What variables to measure?

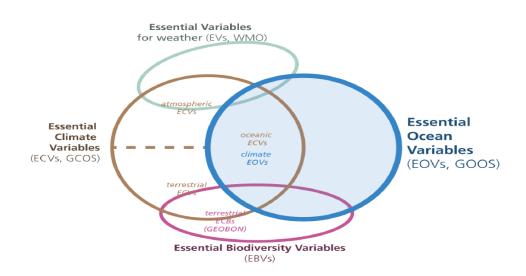
- Minimum set of variables already widely measured and captured in open-access databases (Ocean Biogeographic Information System, Global Biodiversity Information Facility)
- Additional variables require R & D to make operational
- National and EU R&D projects (e.g. AtlantOS)

Biodiversity variables

Data	Information value	Cost (* low to high) and availability	Example
Presence only	Occurrence of species of importance to society, e.g. economic, threatened, endemic, pest, ecological (keystone).	* Low for conspicuous and easily sampled species. Maybe reduced by eDNA & RNA techniques in future.	Most data in GBIF, OBIS, WoRMS, biota checklists
Relative abundance	Ecosystem change; change in community structure and food webs	** enables rapid processing of observations and samples into (e.g. log10) abundance scales.	Most ecological surveys
Presence & absence	Extirpation of species e.g. due to extinction, removal of pest, climate change.	*** confidence in absence subject to sampling methods. Difficult to apply to rare species.	Time-series data using standard sampling methods can infer absence
Abundance	Trends in particular populations. Biological productivity.	**** routinely collected for species of economic (e.g. fish stocks), ecological (e.g. land cover, ocean chlorophyll) and conservation importance.	Living Plant Index. Fishery stock estimates.
Population structure	Population health: recruitment, age profile.	**** Limited to populations of species that are easily sampled or of special interest	Fishery stock surveys.

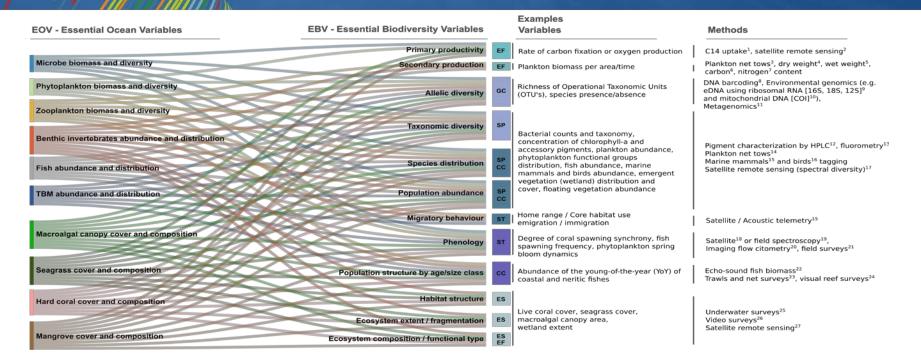
Sources of observations

- National and State surveys
- Marine Protected Area studies
- Fisheries harvest and landings
- Remote Sensing
- Research
- Advanced technologies: acoustics, video, environmental DNA, autonomous vehicles



GEO BON MBON, GOOS BIO ECO PANEL

Relations between Biological EOVs and Marine EBVs



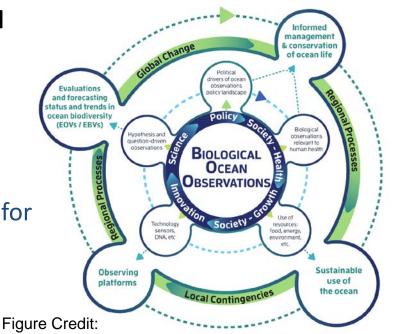
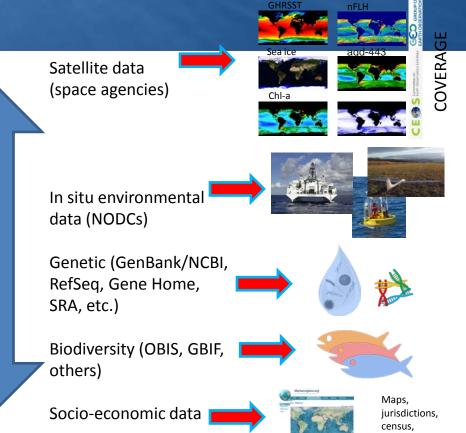


Figure 1. Conceptual relationship between EOVs and EBVs

EMB Working Group: GEO+GOOS biological ocean observations

Relevance, nature and context of biological ocean observation

Stefi Klein Miloslavich



European

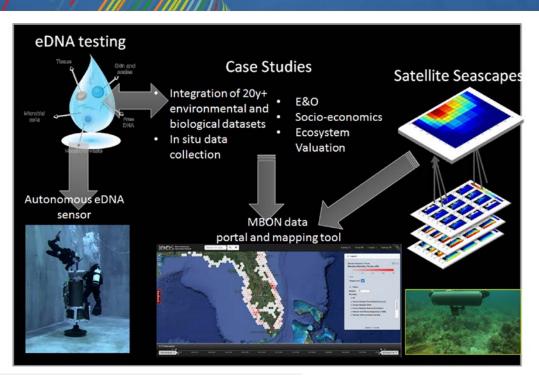
Integration of data

Societally-relevant products need linked data pipelines

At least 5 pipelines need to be linked:

economy

How can this be done in practice? Pilot studies



From observations to data to knowledge

Maps

Abundance

Trends

Indicators - Assessments

Partners P2P MBON Kick-off: September 2016, Mexico invernar Ameri CONICET MBON Canada USA The Global Ocean Mexico Costa Rica Panama **Observing System** EBV's / EOV's Colombia Ecuado Methods / Tools GEO BON Argentina Image: Mean surface Chl-Marine a from SeaWIFS. Black

OCEAN BIOGEOGRAPHIC INFORMATION SYSTEM

line shows Large Marine

Ecosystems.

Capacity Building and Training Workshops: 2nd Pole-to-Pole MBON Workshop

- **Marine Biodiversity Workshop**
- AmeriGEOSS Week, August 6-10, 2018, São Sebastião, Brazil
- Biodiversity observations in rocky shores and sandy beaches

Thematic implementation

Workshop: Implementation of global, sustained and multidisciplinary observations of plankton communities - Plankton-mob

AIM: IDENTIFY BEST PRACTICES AND TECHNICAL FEASIBILITY TO INCORPORATE PLANKTON MEASUREMENTS INTO GLOBAL OCEAN OBSERVING PLATFORMS (INITIALLY GO-SHIP AND EXPANSION INTO OCEANSITES).

Organizers/contacts:

Jay Pearlman (<u>jay.pearlman@yahoo.com</u>), Patricia Miloslavich (<u>pmilos@usb.ve</u>), Raphael Kudela (<u>kudela@ucsc.edu</u>), Henry Ruhl (<u>hruhl@mbari.org</u>), Frank Muller-Karger (<u>carib@usf.edu</u>)

Plankton EOV implementation workshop: Goals

Focus:

- -Phytoplankton diversity and biomass EOV
- -Zooplankton diversity and biomass EOV

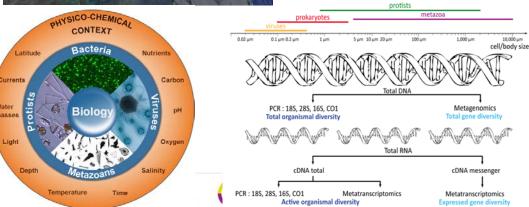
cyanobacteria diatom dinoflagellate green algae coccolithophore

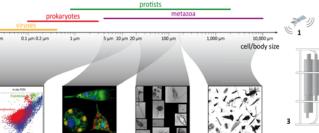
Goals:

- Long-term: Strategy for a global <u>network</u> of plankton EOV observations
 - Operational: Justification & Benefits
 - Steps toward implementation (GO-SHIP; OceanSITES, other networks)
- Short-term (1-3 years) Define a (regional) pilot project:
 - Who, What, Where, How? (GO-SHIP; OceanSITES, other networks)

Remote Sensing Ocean Color

NASA-PACE: UV<->NIR

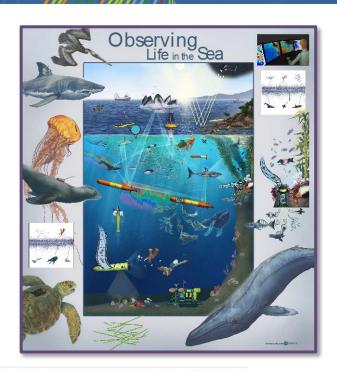



High Throughput Analysis

High Throughput Sequencing

High Throughput Imaging

High-Throughput Microscopy


FlowCam

ZooScan

Physico-chemistry

Marine Network from GEO BON and...the biodiversity arm of Blue Planet

Contacts: (GEO BON / MBON co-chairs)

- Isabel Sousa Pinto (ispinto@fc.up.pt)
- Frank Muller-Karger (carib@usf.edu)
- --Mark Costello (m.costello@auckland.ac.nz)

