ATH EEO BLUE PLANET SYMPOSIUM

4-6 July 2018 - Toulouse, France

Mercator Ocean, France

Development of information services: example from the Copernicus Marine Environment Monitoring Service (CMEMS)

P.Y. Le Traon – Mercator Ocean with Mercator Ocean and CMEMS teams

#GEOBluePlanet4

Outline

Drivers and vision

Products, services, users/applications

Service evolution activities

COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE Providing PRODUCTS and SERVICES for all marine applications

From phase 1 (2015-2018) to phase 2 (2018-2021)

Conclusions

The European Copernicus Programme

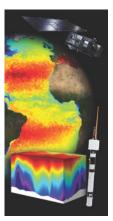
BLUE a GEO Initiativ

Copernicus

Copernicus Marine Service Drivers & Vision

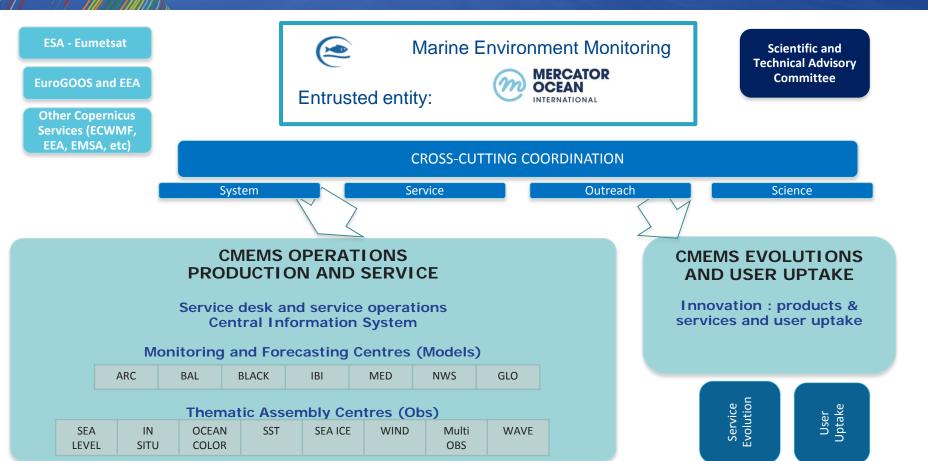
Our Drivers: Ocean Observing/Forecasting – an imperative

- Societal challenges (climate, ocean health)
- **Gamma Sustainable management of the ocean and its resources**
- Blue Growth and blue economy


SUSTAINABLE GOALS

Our Vision: a world-leading marine environment monitoring service supporting blue growth and the blue economy for:

- Maritime safety,
- **Effective use of marine resources,**
- □ Healthy waters,
- Informing coastal and marine hazard services,
- **Supporting climate services.**



Operational Oceanography integrated (observations satellite, in-situ, models) and science based approach

Copernicus Marine Service (CMEMS) : organisation



The Copernicus Marine Service

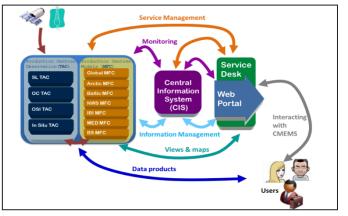
IROPEAN CITY OF SCIENCI

Open and Free access

April 2018 :

- a 4th annual cycle for CMEMS implementation
- Start of the 2nd phase of the operational phase (April 2018-April 2021)

The Copernicus Marine Service - Today


A state of the art and user driven Copernicus service:

- Operational and scientifically assessed
- Observations (satellite, in-situ) and models
- Physics and Biogeochemistry
- A **network** of European producers
- A single catalogue: Worldwide and European-wide coverage
- A **central information system** to search, view, download products and monitor the system
- A **service desk** to support users who relies on a network of technical & marine experts
- Generic service to serve a wide range of downstream applications. 13 000 subscribers.

A central service desk / single interface

A Central Service Desk (assistance, expert support, user monitoring)

MARITIME SAFETY

COASTAL AND MARINE

MARINE RESOURCES

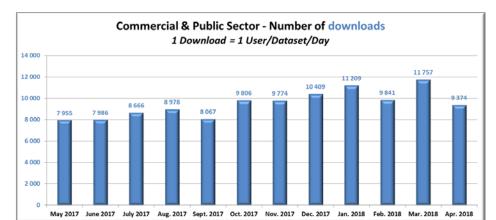
WEATHER, SEASONAL

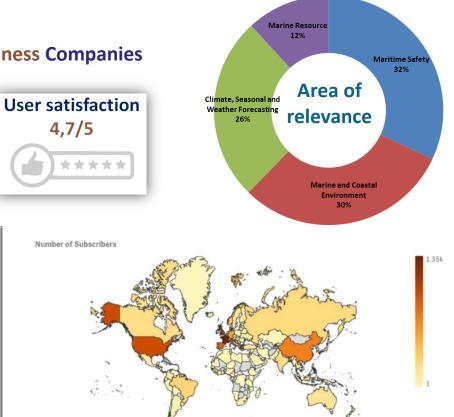
FORECASTING AND CLIMATE

marine.copernicus.eu

Copernicus

Marine Service




Uptake of products

4,7/5

* * *

- **12 900 Subscribers (intermediate users)**
- 4300 Different Entities among which 1100 Business Companies
- **Downloads/month**: 35 000
 - Download = Pair User/Dataset per Day •
- Volume/month: 58 Tb ۰
- 98% products on time .

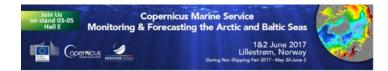
Gathering user requirements

Collect of feedback, suggestions

- Sent to service desk
- Heard during workshops& EU user forum
- Picked up from projects
- Picked up from 1 annual questionnaire
- And from face to face, 2-3 by year, user workshops

Record and analyze

- More than 1500 users' request
- Analyzed every 12-18 months



THE COPERNICUS MARINE WEEK BRUSSELS, 25-29 SEPTEMBER 2017

#CMarineWeek @CMEMS_EU @MercatorOcear

Develop knowledge on service improvements expected today by our users (e.g. resolution, waves, tides, quality, service)

Learning from our users

WEATHER CLIMAT

Corners

More than 100 use cases available on line

See presentations on day 2 & 3

> Copernicus Marine Service

a GEO Initiative

USE CASES

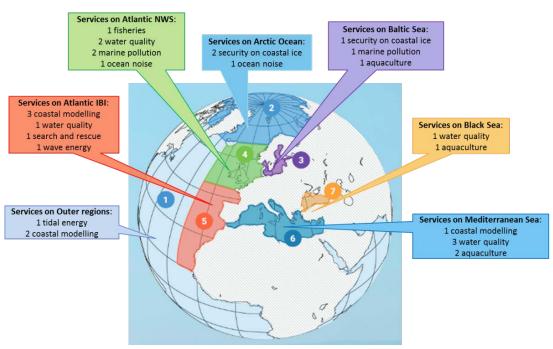
FUROPEAN CITY OF SCIENCE

ESOE 2018

See examples of how CMEMS data is used. You can also download all use cases.

http://marine.copernicus.eu/markets/use-cases/

CMEMS user uptake activities


Overall objectives:

- To support the integration and the impact of the Copernicus Marine Service products and services for downstream applications.
- To encourage intermediate users to develop their own (private or public) downstream operational systems based on CMEMS.
- Focus on the coastal downstream sector.

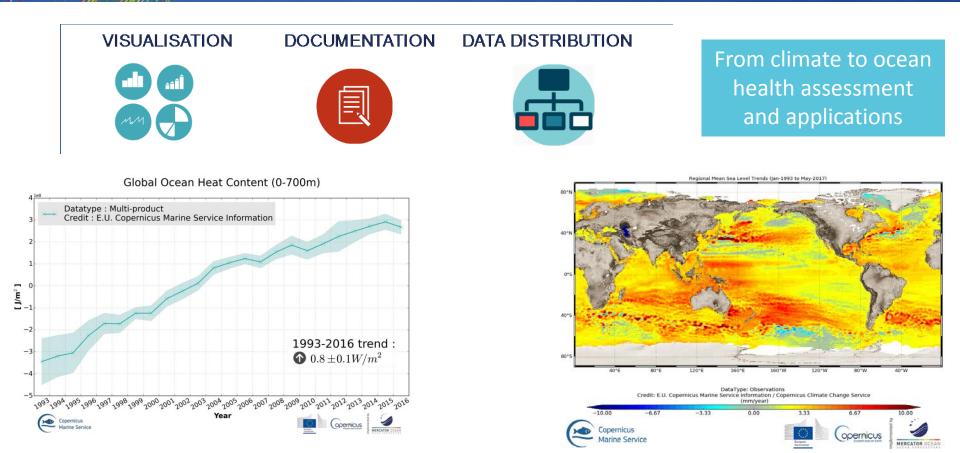
D. Obaton, E. Durand

Thematical and geographical distribution of the total of 30 selected projects funded since April 2017 in the frame of the two User Uptake Component open Calls

CMEMS: Annual Ocean State Reports

State of the global ocean and the European seas, highlighting changes occurred during the previous year. Value added information based on CMEMS products (reprocessing, reanalysis) and scientific expertise. Published in a peer-reviewed journal (Journal of Operational Oceanography).

SUMMARY OPCI OF THE COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE OCEAN STATE REPORT 2016


K. von Schuckmann et al.

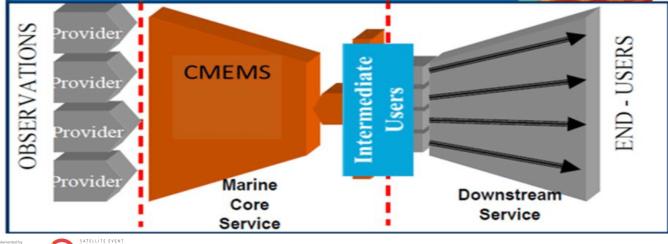
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><complex-block>

Summary of outcomes targeted at policy makers

ISSUE #2 (in press) ISSUE #3 (starting)

CMEMS: Ocean Monitoring Indicators

From observations to information and users A complex added value chain


Observations (satellite, in-situ)

Modelling/data assimilation to transform observation into information (incl. ocean forecasts)

Ocean Monitoring Indicators – Ocean State Reports - Assessment

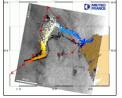
From information to user service – the service layer

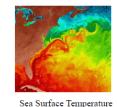
Core (generic & European added value) versus Downstream services

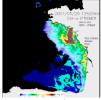
The essential role of (upstream) observations

CMEMS offer is highly dependent on the satellite (e.g. Sentinels) and in-situ observing capabilities (validation, assimilation).

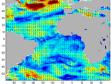
CMEMS has defined its present/future requirements both for satellite and in-situ observations.


Service and Service evolution require 1/ continuity and 2/ significant improvements of ocean observing capabilities





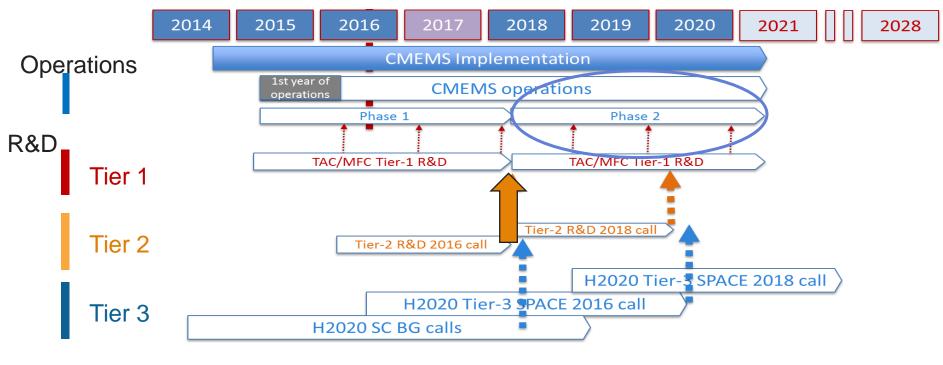
Altimetry and gravimetry (sea level and ocean currents)



Ocean Colour (Chl-a, SPM)

Surface roughness from SAR Sea Ice (concentration, drift, thickness) (e.g. waves, winds, oil slicks)

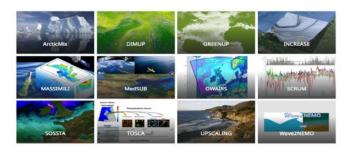
Winds (speed and direction)


CMEMS Service Evolution – Principles

- Users are explicitly and transparently involved:
 - Users needs drive service evolution,
 - User feedbacks and needs are regularly monitored and collected,
 - Work to translate user requirements into achievable service evolution objectives.
- Scientific (satellite and in-situ observations, modelling, data assimilation) and technological (e.g. computing capabilities, information systems & big data) advances relevant for the CMEMS are to be fully taken into account.
- Innovation capacity required to attract new users.
- Delineation with downstream activities:
 - The core service focuses on activities best performed at pan-European scale.

Service Evolution: Roadmap

CMEMS service evolution roadmap



CMEMS Service Evolution R&D projects

Evaluation of projects by the STAC after external reviews. 1st Call (2016-2018), 2nd Call (2018-2020).

Tier-2 R&D: aiming at improving the operational service within 2 to 3 years

First call - 12 projects

A. Melet, I. Garcia Hermosa

Main Topics

Ocean, Wave, Ice, **Atmosphere coupling**

Data assimilation (BGC)

Coastal (downscaling, river inputs, observations)

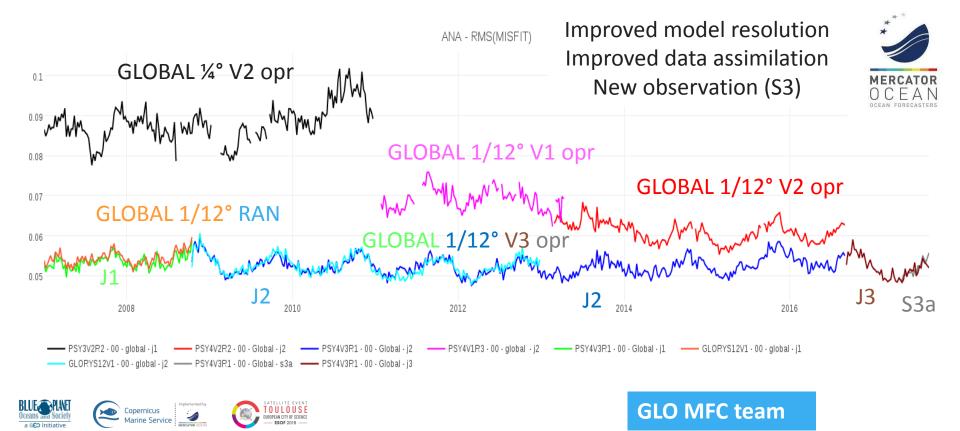
2nd call - 18 projects

Copernicus Marine Service

http://marine.copernicus.eu/science-learning/service-evolution/rd-projects-funded-cmems/

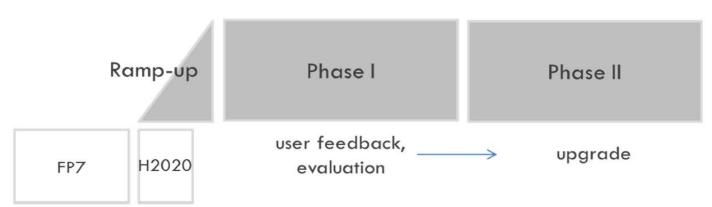
Phase 1 R&D Achievements - Highlights

Important R&D advances have been achieved during CMEMS Phase 1 (April 2015 – April 2018) and significantly improved service is or will be soon proposed to the users:


- wave observations and models,
- improved resolution,
- wave/circulation coupling,
- better use of existing satellite and in-situ observations,
- uptake of Sentinel 1 data (sea ice, wave) and Sentinel 3 (altimetry, sea surface temperature, ocean colour) data,
- longer time series of reprocessed in-situ and satellite data and ocean reanalyses,
- improved and more homogenized product quality assessments,
- ocean monitoring indicators and ocean state report.

Evolution of sea level analysis errors - global system

From CMEMS Phase I to CMEMS Phase II


2017 2018

2019

2020

Main objectives : ensure continuity of service, increase user uptake, continuous improvements, full uptake of Sentinel capabilities, upgrade of products and services based on phase I outcomes and user feedbacks.

2016

CMEMS Phase I and Phase II from Technical Annex of the EU-Mercator Ocean Delegation Agreement for the implementation of the Copernicus Marine Service (2014)

2014

2015

Increase user uptake, gain new users, competitiveness of the downstream sector

Strengthen our interactions with users and our training, outreach and market development activities

Workshops / Info Sessions / External Meetings / User Uptake programme

ONLINE TUTORIALS

HOW TO DOWNLOAD PRODUCTS? (SERVICE RELEASE SEPTEMBRE 2015 You wish to download a CMEMS (Copernicus Marine Service) product? simple it is


CMEMS provides state-of-the-art information available on the Global Ocean (world 6 European seas, based on the combination of space and in situ observations, and models (eq: temperature, satinity, currents, sea ice, sea level, wind and biogeocher service is open and free of charge at the point of use

Tallinn » News & agenda » Agenda » Talley 💟 🖾 🖬 🚺 🚮

Copernicus Marine Service InfoDay "Powering marine business and services in Estonia" Tallinn, Estonia, 18 April 2016 (afternoon)

Regional User Training and Workshop

CMEMS Phase II (2018 – 2021)

Main foreseen evolutions /products

Maritime transport and marine safety

- Improved models (resolution, tides), ocean/wave coupling.
- improved assimilation schemes (e.g. ensemble approaches).
- new observed surface current products.
- new ice products (thickness) and assimilation.

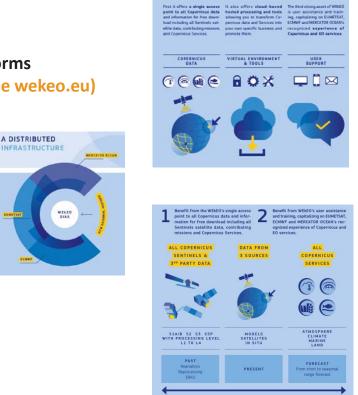
Biogeochemistry: ocean health monitoring and marine resource management

- Improved CMEMS biogeochemical (BGC) products (satellite, in-situ, models).
- Assimilation of ocean colour in all BGC models. Assimilation of BGC Argo.
- Carbon, CO2 fluxes and pH from in-situ observations and models.
- New micronekton products (off line).

Coastal : better meet requirements from coastal zone users

- Improving satellite products (e.g. OC), new in-situ observations (HF Radars)
- Improved models (e.g. resolution) to facilitate the coupling with downstream coastal models.
- Strengthening interfaces with downstream coastal models.

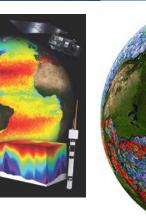
CMEMS Phase II (2018 – 2021)


Main foreseen evolutions /services

New paradigm for services and users thanks to DIAS platforms EUMETSAT/ECMWF/MERCATOR OCEAN DIAS platform : WEkEO (see wekeo.eu)

- Discover, search and access all Copernicus data and information (Sentinels, Services).
- Access cloud-based processing capabilities.
- Users can develop and execute their own applications.
- Front-offices providing value-added services.

FUROPEAN CITY OF SCIENCI


Conernicus

Conclusions

- The Copernicus Marine Service: from observation to information and service => an integrated and science based approach to describe and forecast the ocean.
- A user driven service: user requirements collected and translated into upstream observation and service evolution requirements.
- A successful initial phase (2015-2018): operational, user uptake, service evolution, R&D achievements. CMEMS Phase II (2018-2021) and beyond: service continuity and evolutions based on R&D and IT advances and evolution of observing systems (Sentinels).
- International collaboration (sharing knowledge, best practices) essential for all components of the added value chain: observations, modelling&data assimilation, users. Essential role of GEO Blue Planet to strengthen the interaction with the wide range of user communities.

